Palanca

Una barra AB que puede girar alrededor de un punto fijo O es una palanca. Su utilidad se sustenta en que las distancias recorridas por A y por B sobre los arcos, dependen únicamente de las longitudes OA y OB, porque tratamos con arcos de circunferencia trazados con ángulos iguales.

La ley física de la palanca nos dice que las fuerzas aplicadas en los extremos de la barra, son inversamente proporcionales a las distancias respecto del centro de giro. Esto se debe a que el trabajo realizado en los dos puntos ha de ser igual o, lo que es lo mismo, han de ser iguales los productos de las fuerzas aplicadas en cada punto por las distancias desde O a cada punto.
           FA x OA = FB x OB de donde FB / FA = OA / OB
La construcción de una palanca se inicia, como en casos anteriores, con los dos segmentos que contienen las longitudes de los brazos de la barra OA y OB y marcamos el centro de giro O.

Si tomamos el punto A como el impulsor y B como seguidor, ambos estarán situados sobre arcos de circunferencia con centro en O, que podemos situar sobre las circunferencias dibujadas con el compás. Colocamos primero A sobre el arco XY y trazamos la recta que pasa por O y A, B será el punto de intersección de esta recta con la otra circunferencia.


  

El arco sobre el que se mueve B se puede marcar como el lugar geométrico del punto B, cuando A toma posiciones distintas sobre el arco XY. Después de esto podemos modificar los brazos de la palanca, cuando sea necesario, con sólo desplazar A y B en los segmentos de la parte superior.