1. Primeros pasos |
El enunciado no aparenta mayores dificultades ya que la pregunta es muy abierta, esto se hace para que todos los alumnos puedan abordarla y obtengan soluciones con rapidez que les sumerjan en el trabajo. Muy pronto obtienen algún procedimiento:
que en muchos casos son repetidas, es el momento de recordarles que el enunciado pide obtener nuevos procedimientos y que, tanto los dos de la izquierda como los dos de la derecha responden al mismo. También hay que ir aclarando con ellos nuevas situaciones que aparecerán a lo largo de su trabajo: si hay que dividir el cuadrado en dos partes iguales (cosa que ocurría en el ejemplo del enunciado), si se pueden utilizar varias líneas, si pueden ser curvas, o si soluciones como las siguientes serán válidas todas estas consideraciones pueden llevar a interesantes debates en clase, como el que plantea Crawfort, D (1988) cuando plantea a la clase qué es un cuadrilátero y provoca un interesante debate acerca de si los polígonos cruzados son polígonos o no. En la primera fase de exploración, el papel del profesor es el de “dejar hacer”, anima el trabajo de los grupos y va tomando nota de las ideas que surgen, tanto de los aciertos como de los posibles errores y los distintos enfoques. En esta fase el profesor diagnostica el nivel de los estudiantes y diseña las posibles intervenciones. Cuando hay suficiente trabajo avanzado, el profesor puede hacer una primera puesta en común para que los estudiantes expongan ante la clase sus experiencias, intenta que sean los compañeros los que valoren los resultados obtenidos y les reta para que abran nuevas vías para el trabajo posterior. La clave de esta fase consiste en crear en la clase el ambiente adecuado para que cualquier aportación sea analizada, debatida y valorada positivamente. |